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Wall boundary conditions for the lattice Boltzmann equation �LBE� method for nonideal gases proposed by
Lee and Fischer �Phys. Rev. E 74, 046709 �2006�� are examined. The LBE simulations of the contact line are
typically contaminated by small but strong counter-rotating parasitic currents near solid surfaces. We find that
these currents can be eliminated to round-off if the potential form of the intermolecular force is used with the
boundary conditions based on the wall energy approach and the bounce-back rule. Numerical tests confirm the
elimination of the parasitic currents in the vicinity of the contact line and the agreement of the calculated
density, excess mass, and contact angle at the solid surfaces with theory.
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The lattice Boltzmann equation �LBE� simulations of the
contact line generate small counter-rotating vortices near
solid surfaces �1�, which usually become stronger as the con-
tact angle deviates from its neutral value of 90°. The magni-
tude and spatial extent of the vortices increase with the sur-
face tension force and decrease with the viscous dissipation.
Since the vortices do not disappear even in the simulation of
the static contact line, they should not be attributed to the
mass transfer as an evaporation and condensation process to
overcome the singularity of the dynamic contact line or con-
sidered as the wedge flow solution �2�. They are the parasitic
currents arising from the imbalance between stresses at the
liquid-vapor-solid interface, and can be amplified by im-
proper boundary conditions. Since the parasitic currents are
numerical artifacts due to discretization errors, they can be
avoided if consistent discretization schemes are adopted.

Attempts have been made to reduce the magnitude of the
parasitic currents and identify their origins either by revising
the formulation of the surface tension force and improving
the isotropy of discretization �3–5�, or by incorporating the
sharp interface dynamics �6,7�. In particular, Lee and Fischer
�5� showed that for the van der Waals fluid, use of the po-
tential form of the surface tension force and the isotropic
finite difference in the intermolecular force eliminates the
parasitic currents to round-off and enables stable simulation
of nonideal gas flows with large material property differ-
ences.

All of these studies, however, focused on the reduction or
elimination of the parasitic currents without considering the
effects of wall boundaries. Although the numerical experi-
ments on the contact angles with the LBE methods have
been quite successful �1,8–20�, the elimination of the para-
sitic currents and the prediction of the wall density profile
have not received much attention. In the external forcing
approaches �8–11�, mass conservation across the boundary
nodes can be easily violated because of the nonzero chemical
potential gradient in the direction normal to the boundary. In
the coating approaches �12,13�, the solid surface is coated
with fluid in such a way as to yield the desired contact angle,

but the density of the coating fluid may be inconsistent with
the wall density determined from minimization of free en-
ergy. Density is expected to take higher values than that of
the bulk phase at the wetting surface due to attraction and
lower values at the nonwetting surface due to repulsion �14�.
Failure to satisfy mass conservation or to predict correct wall
density distribution would result in strong and localized
parasitic currents in the vicinity of the contact line.

In this Brief Report, we propose boundary conditions
based on the wall energy approach �17–21� for the accurate
prediction of the contact angle and wall density distribution,
and the bounce-back rule with equilibrium condition for the
mass conservation. We derive the wall boundary condition
for the intermolecular forcing term that is consistent with the
bounce-back rule. The equilibrium contact angle and density
distribution of a static drop on solid surfaces with different
wetting characteristics will be examined and compared with
theory. It will also be shown that the parasitic currents are
eliminated in the presence of wall boundaries.

The discrete Boltzmann equation �DBE� for the van der
Waals fluid with Bhatnagar-Gross-Krook �BGK� collision
operator �22� was proposed by He et al. �23� and can be
written as

�f�

�t
+ e� · �f� = −

f� − f�
eq

�
+

�e� − u� · F

�cs
2 f�

eq, �1�

where f� is the particle distribution function, e� is the micro-
scopic particle velocity, u is the macroscopic velocity, � is
the density, cs is the speed of sound, � is the relaxation time,
and f�

eq is the equilibrium distribution function �24�. In the
above, F models the intermolecular attraction and the effects
of the exclusion volume of the molecules on the equilibrium
properties of a dense gas, which can be expressed in the
potential form to avoid development of the parasitic currents
�5�,

F = ��cs
2 − � � ��0 − ��2�� , �2�

where � is the gradient parameter, �0 is the chemical poten-
tial, and � is the gradient parameter. The equilibrium prop-
erties of a system without a wall boundary can be described
by a bulk free energy �b=���E0���+�����2 /2�d�. In the
pseudo–van der Waals fluid, E0 can be approximated by
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E0���=	��−�v
sat�2��−�l

sat�2 �25�. Given the interface thick-
ness D, the constant 	, and the saturation densities �v

sat and
�l

sat, the gradient parameter � and the liquid-vapor surface
tension force 
 can be computed as �=	D2��l

sat−�v
sat�2 /8

and 
= ��l
sat−�v

sat�3 /6�2�	, respectively. In Eq. �2�, the
chemical potential is related to E0 by �0=��E0 and the pres-
sure by p0=���E0−E0, which leads to �p0=���0. In �25�, it
was shown that the free energy of a closed system filled with
the van der Waals fluid decreases due to viscous effects. If
the pressure form replaces the potential form, however, inex-
act satisfaction of �p0=���0 in the discretized equations
prevents a system from reaching equilibrium causing the
parasitic currents in the direction normal to the phase inter-
face, while nonisotropic discretizations trigger the parasitic
currents with organized eddies. For a detailed discretization
of Eqs. �1� and �2� without wall boundaries, see �5�.

The boundary condition for the second derivative can be
established by considering an additional wall free energy
�s=�0−�1�s+¯ �21�, where �s is the density at the solid
surface. Then, the total free energy takes the following form
�19�:

�b + �s = �
�

	E0��� +
�

2
����2
d� − �

�

��1�s�d� , �3�

where only the linear term of �s is taken. At equilibrium, we
have two stable solutions that satisfy −�1= 
�2�E0���. In
terms of the dimensionless wetting potential defined as �
=4�1 / ��l

sat−�v
sat�2�2�	, equilibrium densities at the solid

surface in contact with liquid and vapor phases are ex-
pressed, respectively, as

�s,l =
�l

sat + �v
sat + ��l

sat − �v
sat��1 + �

2
,

�s,v =
�l

sat + �v
sat − ��l

sat − �v
sat��1 − �

2
. �4�

The dimensionless wetting potential is related to the equilib-
rium contact angle �eq by

� = 2 sgn	�

2
− �eq
�cos	�

3

�1 − cos	�

3


�1/2

, �5�

with �=arccos�sin �eq�2. This imposes the boundary condi-
tion for �2� in Eq. �2� as �n ·��s=−�1, where n is the unit
outward normal vector. Once the boundary condition for �2�
is prescribed, �=�0−��2� is treated as a scalar.

For the unknown particle distribution function at the solid
surface, the equilibrium boundary condition is imposed �26�,
in which �s is calculated according to the bounce-back rule
after streaming, followed by immediate relaxation toward the
equilibrium state with the density and velocity at the solid
surface. This procedure is further illustrated as follows. Sup-
pose e�̄ is in the direction opposite to e� and f �̄�xs�= f��xs� is
imposed by the bounce-back rule, where xs denotes a grid
point populated at the solid surface. Since the streaming step
is the exact solution of the pure advection equation �t f�

+e� ·�f�=0, the bounce-back rule implies �t f �̄�xs�=�t f��xs�,
which yields e�̄ ·�f �̄�xs�=e� ·�f��xs�. After the bounce-back

condition is applied, f �̄�xs� immediately relaxes toward
f �̄

eq�xs�. Thus, an alternative expression of the bounce-back
rule can be written for e�̄ ·�f �̄�xs� as f �̄

eq�xs�− f �̄
eq�xs+e��t�

= f�
eq�xs�− f�

eq�xs−e��t�, in which xs+e��t is located outside
the computational domain and is unavailable. As u=0 at xs,
f �̄

eq�xs�= f�
eq�xs� and f �̄

eq�xs+e��t�= f�
eq�xs−e��t�. It can be

shown that the first term in Eq. �2� reduces to �e�

−u� ·��cs
2f�

eq�xs� /�cs
2=e� ·�f�

eq�xs� at xs. This requires that
the directional derivative of the density at the solid surface
use the identical discretization to that for the equilibrium
distribution function

��xs� − ��xs + e��t� = ��xs� − ��xs − e��t� . �6�

The same condition is imposed for �. Equation �6� prevents
unphysical mass and momentum transfer through the bound-
ary nodes.

The test cases confirm that the LBE method with the con-
sistent boundary conditions is able to reach an equilibrium at
different contact angles. All the results presented are ob-
tained for a D2Q9 lattice �24�. Figure 1 shows equilibrium

FIG. 2. Time evolution of the maximum kinetic energy with
different values of �eq at D=4, R90°=25, �l

sat=1.0, and �v
sat=0.2.

Time is nondimensionalized to the viscous time of the vapor phase
tv=�v

sat�v
satR�eq /
. � and 	 are fixed at 0.5 and 0.01, respectively.

FIG. 1. Equilibrium profiles of a droplet on solid surfaces of �a�
�eq=30°, �b� �eq=150°. Solid lines represent contours of �
=0.3,0.6,0.9 and dashed lines represent the initial location of
��l

sat+�v
sat� /2=0.6.
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profiles of a droplet sitting on the solid surfaces with the
equilibrium contact angles of 30° and 150°. At equilibrium,
the parasitic currents drop to round-off. We fix 	=0.01,
�l

sat=1.0, �v
sat=0.2, and D=4, in which case the surface ten-

sion force becomes 
=1.365�10−3. The dimensionless re-
laxation time is set to �=� /�t=0.5, where �t is the time step.
As an initial condition, a two-dimensional �2D� droplet is
generated at the bottom center of the 150�50 computational
domain. The initial area of the droplet with different contact
angles is kept constant such that its radius on the neutrally
wetting solid surface is R90°=25. The liquid-vapor interface
is represented by a contour level ��l

sat+�v
sat� /2 and is found to

be well preserved after long time integration.
Two things are notable. First, in Fig. 1�a� the shape of the

contact line near the solid surface is slightly deformed to-
ward the center of the droplet. As will be discussed later, it is
because wetting surfaces locally increase the fluid density
and therefore the contact line may not be properly repre-
sented by the contour level ��l

sat+�v
sat� /2. Second, in Fig.

1�b� the droplet radius is apparently reduced from its initial
value. It is due to the inclusion of curvature and the conse-
quent elevation of the equilibrium bulk density inside the
droplet �5�. The reduction in radius is less pronounced in Fig.
1�a� where the contact angle is smaller and the radius of
curvature is larger.

Time evolution of the maximum kinetic energy with dif-
ferent contact angles is shown in Fig. 2. When the time is
nondimensionalized to the viscous time of the vapor phase
tv=�v

sat�v
satR�eq /
, the convergence rates for different �eq

roughly collapse on a single curve except for �eq=30°. At
small �eq, the liquid-vapor interface is too close to the solid
surface making it difficult for the liquid at the solid surface
to reach the elevated equilibrium density.

Figure 3�a� shows the equilibrium contact angle �eq vs the
dimensionless wetting potential �. The equilibrium contact
angle is calculated from the geometry of a droplet placed on
the solid surface �16�. The LBE simulations are compared
with the analytic solution, Eq. �5�, and they are in good
agreement for moderate contact angles. The LBE results start
to deviate from Eq. �6� at large contact angles. It is specu-
lated that since the area of the droplet is fixed in all simula-
tions, the radius of the droplet is smaller for nonwetting sur-
faces and the grid resolution to represent a droplet is
deteriorated as a result. It is noteworthy that neither the den-
sity nor the gradient of density at the solid surface is fixed
during the simulation. It evolves as part of the solution to
minimize the total free energy. If the wall density is pre-
scribed as in the coating approach �27�, or �n ·��s=−�1 is
enforced for the first derivative of density as well as the
second derivative �18�, the parasitic currents do not disap-
pear because of redundant boundary conditions, although the
equilibrium contact angle still agrees well with theory. In
Fig. 3�b�, comparison between the surface densities at the
solid surface in the LBE simulations and the analytic for-

(b)

(a)

(c)

FIG. 3. �a� The equilibrium contact angle �eq, �b� density at the
solid surface, and �c� excess mass vs dimensionless wetting poten-
tial �. In �b� and �c�, solid lines represent the vapor phase and
dashed lines represent the liquid phase.

FIG. 4. The density profiles of �a� the liquid and �b� the vapor
phases vs the distance y from the wall with different values of �eq.
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mula, Eq. �4�, is given. On wetting surfaces, fluid densities
are elevated as �, while on nonwetting surfaces, they are
lowered. It can be shown that the density varies exponen-
tially from the value at the solid surface to that in the bulk.
The excess mass due to the deviation of the wall density
from that of the bulk fluid can be defined as �eb=�0

����y�
−�bulk�dy �17�, where b=v �vapor� or l �liquid�. For the
pseudo–van der Waals fluid, they become

�ev = −� �

2	
ln

1

2
�1 + �1 − �� ,

�el =� �

2	
ln

1

2
�1 + �1 + �� . �7�

In Fig. 3�c�, the computed values of the excess mass are
compared with the analytic prediction. The density of the
computed bulk fluid inside the droplet is taken as �bulk rather
than the saturation density, because of the inclusion of cur-
vature. The density profiles of the liquid along the centerline
of the droplet and the vapor along the vertical line away from

the droplet are presented in Fig. 4. The exponential variation
of the density from the solid surface is clearly visible. Due to
the inclusion of curvature, the bulk densities �bulk for both
liquid and vapor phases are elevated over their saturation
densities �l

sat=1.0 and �v
sat=0.2. The bulk densities inside and

outside of the droplet increase as the radius of curvature of a
droplet gets smaller at larger �eq.

To summarize, we demonstrated that the parasitic currents
could be eliminated to round-off if the potential form of the
intermolecular force was used with the boundary conditions
based on the wall energy approach and the bounce-back rule.
The small counter-rotating vortices commonly found near
the contact lines are simply numerical artifacts and are elimi-
nated in the proposed approach. The wall energy approach
needs to be correctly implemented in the framework of the
bounce-back rule. Redundant prescription of boundary con-
ditions does not minimize the total free energy, in which case
the LBE method is unable to reach equilibrium.
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